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Bc. Lukáš Vávra

Study programme: Electronics and Communications
Field of study: Communication Networks and Internet

Supervisor: prof. Ing. Zdeněk Bečvá̌r, Ph.D.

Prague, January 2024



ii

Thesis Supervisor:
prof. Ing. Zdeněk Bečvář, Ph.D.
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Abstract

Mobile networks in which unmanned aerial vehicles (UAVs) are deployed and serve as
flying base stations (FlyBSs) can potentially increase channel capacities offered to mobile
network users and therefore improve the overall mobile network performance. The opti-
mization of the performance of the mobile networks with the integrated FlyBSs from the
perspective of the FlyBS positioning, the user equipment (UE) association to the Fly-
BSs or the transmission power allocation etc. has already been investigated in multiple
research works. This thesis, however, proposes a novel framework that jointly addresses
the problem of the positioning of the FlyBSs and the problem of the UE association via
introducing offline-trained deep neural networks (DNNs). The proposed framework inte-
grates the DNNs into a system of interconnected DNNs that cooperate with each other by
sharing prediction information in order to improve the accuracies of their predictions and
therefore to enhance the overall performance of the proposed framework. The simulation
results show that the proposed framework outperforms the other competitive schemes
in terms of the overall channel capacity by 14% - 95% depending on the number of the
FlyBSs and the number of the UEs in the mobile network cell. In terms of fairness of
the distribution of the channel capacities among the UEs in the mobile network measured
by Jain’s fairness index, the proposed framework delivers better results by 5% - 106% in
comparison with the competitive schemes.

Keywords: mobile network, flying base station, deep neural network, positioning of
flying base stations, association of user equipment
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Abstrakt

Mobilńı śıtě, které využ́ıvaj́ı nasazeńı bezpilotńıch vzdušných letoun̊u (UAVs), jež slouž́ı
jako létaj́ıćı základnové stanice (FlyBSs), mohou potenciálně zvýšit kapacity kanál̊u, které
jsou poskytované uživatel̊um, a t́ım i celkově zlepšit výkonnost mobilńı śıtě. Metody
zlepšeńı výkonnosti mobilńıch śıt́ı s integrovanými FlyBSs z hlediska rozmı́stěńı FlyBSs
v buňce mobilńı śıtě, asociováńı uživatelských zař́ızeńı (UEs) k FlyBSs nebo alokace
vyśılaćıho výkonu atd. již byly analyzovány v mnoha výzkumných praćıch. Tato diplo-
mová práce ovšem prezentuje nový návrh řešeńı optimalizace výkonnosti mobilńı śıtě,
který společně řeš́ı problém rozmı́stěńı FlyBSs zároveň s problémem asociace UEs, a to
prostřednictv́ım hlubokých neuronových śıt́ı (DNNs). Návrh integruje DNNs do kom-
plexńıho systému propojených DNNs, které mezi sebou sd́ıĺı informace s ćılem zpřesnit
své predikce, a t́ım i zvýšit celkovou výkonnost návrhu. Výsledky simulaćı ukazuj́ı, že
návrh překonává konkurenčńı schémata z hlediska celkové kapacity kanálu o 14% - 95%
v závislosti na počtu FlyBSs a počtu UEs v buňce mobilńı śıtě. Pokud jde o férovost
distribuce kapacit kanál̊u mezi UEs v mobilńı śıti měřenou Jainovým indexem férovosti,
navržené řešeńı prezentuje lepš́ı výsledky ve srovnáńı s konkurenčńımi schématy, a to
konkrétně o 5% - 106% opět v závislosti na na počtu FlyBSs a UEs v buňce mobilńı śıtě.

Kĺıčová slova: mobilńı śı̌t, létaj́ıćı základnová stanice, hluboká neuronová śı̌t, rozmı́stěńı
létaj́ıćıch základnových stanic, asociace uživatelských zař́ızeńı
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Chapter 1

Introduction

Since the rise of mobile networking, constantly increasing requirements on throughput,

coverage, low latency, or reliability have been observed. These requirements and demands

have played a key role in developing new technologies, new network architectures, and

generally new concepts that could lead to an improvement in the performance of the mobile

network. One of the concepts that aim to satisfy emerging demands is to deploy unmanned

aerial vehicles (UAV) [1]. Utilizing the UAVs with integrated base stations, in this thesis

referred as flying base stations (FlyBS), in the future mobile networks complementing

ground base stations (GBS) aims to be a suitable and flexible concept that could assist

in fulfilling increasing demands of mobile network users [2], [3]. The FlyBSs connected to

the GBSs via relay links are able to extend the coverage of the mobile network or improve

the quality of provided services in a specific geographical area by adapting their positions

according to network’s needs [4], [5]. One of the main benefits of the FlyBSs then is that

their deployment can be fast which results in the network being able to react to quickly

changing situations, such as short-time traffic peaks [4], [6].

These qualities indicate that deploying the FlyBSs in the mobile networks can be

potentially beneficial for providing broadband and wide-area temporary wireless connec-

tivity in situations where the permanent instalment of ground networking infrastructures

is unjustified in terms of financial or other reasons [7]. These situations cover scenarios

in which there is a high density of the mobile network users in a certain location, such as

traffic jams, big sport events or concerts [4], [7]. The traffic load originated due to the

mentioned events is temporary and after the events, the load is spread into a larger area.

The concept of deploying the FlyBSs assumes that the FlyBSs are able to temporarily

serve user equipment (UE) in a given location with an increased traffic load. When the

load decreases, the FlyBSs can be relocated to another position where needed.

The challenges that are also addressed by the deployment of the FlyBSs are, for in-

stance, serving remote locations with insufficient coverage due to various economical or

1
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geographical reasons, such as smart farming [7]. Other use cases may include emergency

situations that could be caused by, for instance, natural disasters, such as floods, earth-

quakes, or tornados etc., which could cause damage on the network infrastructure and

therefore cause an outage of reliable connection [7].

Although the potential of the concept of the FlyBS in the mobile networks is signif-

icant, it raises several problems that need to be addressed before an introduction of the

FlyBSs to the mobile networks. Among these problems, a positioning of the FlyBSs in a

cell area, a distribution of the UEs among the FlyBSs, an optimization of trajectories of

movements of the FlyBSs, a transmission power allocation between the BS and the FlyBSs

and between the FlyBS and the associated UEs, a bandwidth allocation or a reasonable

handover policy should be mentioned [4], [6].

Finding an optimized positioning of the FlyBSs in the mobile networks altogether with

determining an appropriate UE association strategy belongs among the key challenges

to be addressed. Optimization of both processes leads to a significant increase in the

quality and the reliability of the provided services [7], [8]. Some works, such as [3], [9]

or [10], combine both the FlyBS positioning optimization as well as the UE association

optimization into a general framework whose objective is to improve the performance

of the mobile networks. While [9] and [10] propose a promising solution to tackle the

above-mentioned challenges considering only connection parameters related to access links

between UEs and FlyBSs, the authors in [3] also consider the backhaul links. The concept

of the integrated access and backhaul (IAB) network architecture is introduced by 3rd

Generation Partnership Project (3GPP) in [11]. The IAB network architecture concept

assumes a close cooperation between the access link and the backhaul link, i.e. the link

between the FlyBSs and the BS. The IAB network architectures raise a challenge of the

mutual interference between the access and the backhaul links. This challenge is targeted

in [3], where the authors propose an interference management algorithm whose objective

is to optimize the UE association and the power allocation of both the access links and

the backhaul links. The algorithm in [3] provides high capacities to the UEs and is power-

efficient, but the allocated power for the backhaul links and for the UEs directly associated

with the BS does not differ which leads to limited efficiency of the FlyBSs in cases when

the majority of the UEs are associated directly with the BS.

The work [12] also builds on the IAB network principles and presents an algorithm

for the UE association based on the K-means clustering followed by reassociation steps

in order to optimize the distribution of the UEs among the FlyBSs and the GBS and to

eliminate bottlenecks caused by a possible overload of certain FlyBSs. The positioning

problem in [12] is addressed via an algorithm based on an adaptation of Coulomb’s law,

where virtual attracting forces originating in the UEs and in the BS act on the FlyBSs.
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This concept with an objective of maximizing efficiency of the FlyBSs deployment in terms

of satisfying the UE data rate requirements while considering the energy consumption of

the deployed FlyBSs presented in [12] is, however, mainly focused on maximizing the

minimal channel capacity among the UEs and therefore does not work as a suitable

solution for maximizing the overall capacity in the mobile network.

The frameworks presented in [5], [9] and [13] and [14] assume that exact locations of

the UEs in the mobile network cell are known. However, as mentioned in [6], in practice,

the locations of the UEs are usually inaccurate or remain undisclosed to the network

due to privacy requirements. This raises another challenge that needs to be addressed.

The paper [2] investigates deploying the FlyBSs as so-called transparent relays in the

mobile networks in cases where the UE locations are known to the network, but also for

cases where the UE locations remain undisclosed. The authors in [2] explore possibilities

of utilizing deep neural networks (DNN) to predict channel gains between the UEs and

the FlyBSs that are then used for the optimization of the UE associations. However,

the number of UEs whose associations are predicted by the DNN goes only up to 5.

The number of UEs in the mobile network cell is generally much greater. A similar

deep-learning approach applied to a greater number of the UEs in the mobile network is

investigated in [6] where the DNNs are introduced to solve the positioning of the FlyBSs

and the association of the UEs in urban scenarios with the UE locations being unknown.

Utilizing the DNNs for estimating the channel gains is also investigated in [15] where

it is shown that the DNNs are capable of estimating the channel gains not only for line-

of-sight (LOS) scenarios, but also for non-line-of-sight (NLOS) scenarios. Although the

applicability of the DNNs to predict channel qualities is proven in [15], this work focuses

on investigation of the DNN utilization in the device-to-device communications which

differs from the mobile network communications investigated in this thesis.

The main objective of this thesis is to increase the overall channel capacity offered to

the UEs in the cell of the mobile cellular network in the LOS scenarios. For this purpose,

this thesis presents a solution that optimizes the processes of the positioning of FlyBSs

and the association of UEs via introducing principles of supervised deep learning methods

and integrates both processes into a robust framework. The framework combines three

complex offline-trained DNNs, optimizing the positioning and the association respectively

in order to fulfill the objectives of the thesis. The simulation results show that the

proposed framework outperforms the other competitive schemes by 14% - 95% in terms

of the overall channel capacity depending on the number of the FlyBSs and the number of

the UEs in the mobile network cell. In terms of fairness of the distribution of the channel

capacities among the UEs measured by Jain’s fairness index, the proposed framework

reports better results by up to 5% - 106% in comparison with the competitive schemes.
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In order to comprehensively present the proposed solution, this diploma thesis is or-

ganized as follows. Chapter 2 presents the description of the system model covering the

model of the network, the channel model, the concept of virual shift forces applied to

the FlyBSs, the modified K-means clustering and high-level DNN principles. Chapter 3

states the thesis problem formulation. Chapter 4 describes the algorithms that address

the FlyBS positioning and the UE association subproblems. In Chapter 4, these algo-

rithms are subsequently combined into the robust final framework that comprehensively

addresses the problem formulated in Chapter 3. In Chapter 5, the parameters of the

system model are presented altogether with other competitive schemes and with metrics

that are later used for the framework performance evaluation. Chapter 6 presents the re-

sults of the performance evaluation based on simulations of the proposed framework and

the competitive schemes. Finally, Chapter 7 summarizes the results of the performance

evaluation and presents possible directions of future research.



Chapter 2

System Model

In this chapter, the whole system model utilized in this thesis is described. At the begin-

ning of this chapter, the network model is presented. This is followed by the description

of the channel model where the channel parameters between the objects located in the

network model are defined. The network model and the channel model are based on the

work of T. Sap presented in [12]. Subsequently, the concept of the virtual shift forces that

act on the FlyBSs and the algorithm of the modified K-means clustering are clarified. Fi-

nally, the principles of functioning of the DNNs are explained. As the topic of the DNNs

is very broad, the attention is mainly focused on the basic principles and parameters that

are essential for understanding of the proposed final solution.

2.1 Network model

In this section, two parts of the network model are described. First, the system space, with

the objects deployed in the network model, is defined. This is followed by the definition

of the links that are established between the system objects and the definition of the UE

associations.

2.1.1 System Space

The system space represents an area that is covered by the cellular mobile network. This

means that the system space is divided into cells where each cell is governed by a single

BS from a set of NBS base stations B = {BS1,BS2,. . . ,BSNBS
}. In the network model, two

types of the cells are defined: one reference cell and the other cells that neighbour the

reference cell and introduce intercell interference. The reference cell is a two-dimensional

space with its dimension lengths defined as d1 and d2 and includes objects of three types:

the ground base station BS1 (in this thesis referred as the BS or the serving BS), a set of

NFlyBS flying base stations F = {FlyBS1,FlyBS2,. . . ,FlyBSNFlyBS
} and a set of NUE user

5
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equipment U = {UE1,UE2,. . . ,UENUE
}. The serving BS together with the set F and the

set U forms a set that is in this thesis referred as the cell objects. The neighboring cells

are represented by the remaining BSs from B and impose interference on the reference

cell.

The positions of the above-mentioned objects are generally three-dimensional and are

defined by the coordinates x, y and z. The positions of the BSs are then defined as

RBS = {rBS1 ,rBS2 ,. . . ,rNBS
} where rBSk

= {xBSk
, yBSk

, zBSk
} for BSk. In a similar way

as the positions of the BSs, the positions of the FlyBSs in the cell are defined as

RFlyBS = {rFlyBS1 ,rFlyBS2 ,. . . ,rNFlyBS
} where rFlyBSj

= { xFlyBSj
, yFlyBSj

, zFlyBSj
} for

FlyBSj. Analogically, the positions of UEs are defined as RUE = {rUE1 ,rUE2 ,. . . ,rUENUE
}

where rUEi
= {xUEi

, yUEi
, zUEi

} for UEi.

The coordinate z expresses an altitude of the cell objects above the ground. Therefore,

for the BSs, the values of their coordinates z remain constant and represent the height of

the BSs hBS. For the sake of simplicity, the values of coordinates z for each UE are also

unified, and thus their value equals to hUE. The z coordinates of the FlyBSs are not fixed,

although their range is limited by the value of the minimum FlyBS altitude zFlyBSmin
and

the maximum FlyBS altitude zFlyBSmax .

Regarding the coordinates x and y, for the purposes of this thesis, all UE are considered

static, i.e., the coordinates x and y of the UEs are determined at the beginning of each

simulation scenario and do not change throughout the simulation. On the other hand, the

FlyBSs are allowed to change their coordinates, as it is one of their most obvious benefits

[4]. The positions of the BSs also remain static. The location of the serving BS is fixed

to the center of the cell.

2.1.2 Links between System Objects

In the cellular mobile network, the BS serves as the central connection point for the UEs

to communicate with the other UEs or other network elements. Therefore, in order to be

served by the network, the UE has to be connected to the BS.

In the proposed network model, there are two possible cases how the UE can be

connected to the BS. In the first scenario, the UE is associated to the BS directly forming

a direct link. In the second case, the UE is associated to the FlyBS that is then associated

to the BS. The FlyBS forwards information from the BS to the UE and vice versa and

acts as a relay. This setup forms a relay link. The relay link is composed of the access

link, i.e. the link between the UE and the FlyBS, and the backhaul link, i.e. between the

FlyBS and the BS [3].
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2.1.3 UE Associations

The links that are established in the system model are described via sets of associations.

Each UE holds two sets of associations, one with the BSs and the other with the Fly-

BSs. For the UEi, the set of the BS associations is defined as aUEi,BS = {aUEi,BS1 , . . . ,

aUEi,BSNBS
} and the set of the FlyBS associaitons is defined as aUEi,FlyBS = { aUEi,F lyBS1 ,

. . . , aUEi,F lyBSNFlyBS
}. The sets aUEi,BS and aUEi,FlyBS are then megred into the set aUEi

that unites all the possible UE associations. For the UEi, the values of the elements of

aUEi
are then defined as follows:

• aUEi,n
= 1 if the UEi is associated with the BS, or the FlyBS that is represented by

the n-th element of the set aUEi
,

• aUEi,n
= 0 otherwise.

Note that each UE has to be connected either directly to the BS or to one and only

FlyBS. This is expressed by the following constraint:

∑
aUEi

= 1 (2.1)

In total, an association scenario is then described by NUE association sets. By merging

the UE association sets, the association matrix A is created. The association matrix A
is described as A = {aUE1 , . . . , aUENUE

}. Figure 2.1 shows the system model with the

possible associations.

Figure 2.1: Example of the system model.
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2.2 Channel Model

In this section, the characteristics of the communication channel are clarified. First,

the parameter of the channel gain is defined. This is followed by the definition of the

bandwidth allocation, the transmission power allocation, the interference and the com-

munication channel capacity.

2.2.1 Channel Gain

In the system model, no obstacle is introduced to the reference cell. Therefore, the

environment of the model is considered LoS. The channel gain expresses a difference in

the signal level between a transmitting network element and an element that receives the

signal. The channel gain is determined by the following formula:

g = (
c

4πdf
)2 (2.2)

where g is the channel gain, c stands for the speed of light, d represents the distance

between the transmitter and the receiver and f is the frequency of the carrier.

2.2.2 Bandwidth Allocation

Each cell in the system model, i.e. the reference cell and all the neighbouring cells, operate

in the same frequency band and also share the same bandwidth Btotal. The bandwidth

in the reference cell is then divided into equal smaller bandwidths and distributed among

all the UEs. This can be expressed by the following formula:

BUE =
Btotal

NUE

(2.3)

where BUE is the bandwidth allocated to one UE and NUE stands for the number of the

UEs in the reference cell.

In case of the relayed links, the access link and the backhaul link share the same com-

munication channel with the bandwidth BUE as the bandwidth allocation optimization is

not the main objective of this thesis.

2.2.3 Transmission Power Allocation

In the system model, the BS and each FlyBS have dedicated power budgets that are

distributed among their associated objects. The power budget of the serving BS is denoted

as PBS, whereas the power budget of all FlyBSs is unified and its value is denoted as

PFlyBS. The power allocation policy then adopts the rules in accordance with which type



CHAPTER 2. SYSTEM MODEL 9

of link is considered. In case of the direct link, the allocated power from the BS towards

the UEi is defined as:

p
(D)
UEi

=
PBS

NUE

(2.4)

where NUE stands for the number of the UEs in the reference cell.

In case of the backhaul link, the power allocated from the BS towards the FlyBS is

dependent on the number of UEs that are associated to the FlyBS. The power allocated

to the FlyBSj is calculated as:

pFlyBSj
=

PBS

NUE

NUEFlyBSj
(2.5)

where NUEFlyBSj
represents the number of UEs associated to the FlyBSj.

Finally, for the access link, the power allocated to the UEi from the associated FlyBSj

is evaluated as:

p
(A)
UEi

=
PFlyBS

NUEFlyBSj

(2.6)

where PFlyBS stands for the power budget of the FlyBSs and NUEFlyBSj
represents the

number of UEs associated to the FlyBSj. Figure 2.2 illustrates the transmission power

allocation scheme.

Figure 2.2: Example of the power allocation in the reference cell.

2.2.4 Interference

Each communication channel is affected by interference. In the system model, two types

of interference are considered: intracell interference, caused by objects that are located

within the reference cell, and intercell interference, originating in the objects that are

located outside the reference cell borders in the neighbouring cells. In the proposed
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system model, the interference power allocated to all channels in the neighbouring cells

is estimated as:

PI =
PBS

NUE

(2.7)

where PBS is the power budget of the BS and NUE is the number of the UEs in the

reference cell.

In the system model, the UE can be connected via the direct link to the BS. In this

case the signal-to-interference-and-noise ratio (SINR) is evaluated as follows:

SINRD =
pigb,i

σBUE +
∑

v∈BI
PIgm,i

(2.8)

where pi is the downlink transmission power allocated towards the UEi, gb,i represents the

channel gain between the BS and the UEi, σ stands for the noise spectral density, BUE is

the bandwidth allocated to the UE from the BS, BI stands for the set of interfering BSs,

PI represents the transmission power of the interfering signal and gm,i is the channel gain

between the UEi and the neighbouring BS where PI originates.

When the UE is connected via the relay link, both SINR for the access link and for

the backhaul link are considered. For the backhaul link the SINR is evaluated as follows:

SINRB =
pjgb,j

σBUE +
∑

v∈BI
PIgm,j

(2.9)

where pj is the downlink transmission power allocated towards the FlyBSj from the serving

BS, gb,j represents the channel gain between the FlyBS and the BS and gm,j is the channel

gain between the FlyBSj and the neighbouring BS where PI originates.

Finally, the access link SINR is expressed as:

SINRA =
pigj,i

σBUE + pjgb,i
∑

v∈BI
PIgm,i

(2.10)

where pi is the downlink transmission power allocated towards the UE from the FlyBS,

gj,i represents the channel gain between the UE and the FlyBS.
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2.2.5 Channel Capacity

To evaluate the channel capacities, Shannon’s theorem is utilized. The channel capacities

for the direct (D), access (A) and backhaul (B) links are then calculated as follows:

CD = BUElog2(1 + SINRD) (2.11)

CA = BUElog2(1 + SINRA) (2.12)

CB = BUElog2(1 + SINRB) (2.13)

where BUE stands for the bandwidth allocated to the UE from the FlyBS and SINR

represents the signal-to-noise-to-interference ratio of the corresponding direct (D), access

(A) or backhaul (B) link.

Generally, the capacities of the access link and the backhaul link do not have the same

value, thus the capacity of the relay link (R) is the lower value from those two values.

Formally, this is expressed as:

CR = min(CA, CB) (2.14)

2.3 Virtual Shift Forces

The channel capacities for each UE are influenced by the distance from the serving station,

either the FlyBS or the BS which the UE is associated to. Logically, when the distance

between the UE and the BS is shorter, the channel capacity tends to improve. However, in

case the UE is associated to the FlyBS, more factors must be considered. In this case, not

only the access link between the UE and the FlyBS impacts the channel capacity, but also

the backhaul link between the FlyBS and the associated UE must be taken into account.

Low quality backhaul links might not offer a sufficient channel capacity between the FlyBS

and the associated BS and therefore might create a bottleneck negatively impacting the

overall relay channel quality.

The concept introduced in [5] addresses the problem of finding the optimized positions

for the FlyBSs considering both the access link and the backhaul link qualities. This

concept introduces a system of virtual forces, similar to electrostatic forces, that act on

the FlyBSs. In order to determine the optimized positions of the FlyBSs, the work [5]

defines two types of the virtual forces. The BS, which the FlyBS is associated to, interacts

with the FlyBS and attracts the FlyBS with a backhaul force. The FlyBSs also experience

access forces that originate in the associated UEs. However, the work [5] defines the virtual

forces based on the power allocation parameters in the reference cell. Unlike that, this
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thesis presents a concept of the virtual force definition based on the distances between

the FlyBS and the UEs and the BS. The backhaul force between the FlyBSj and the BS

is expressed by the following formula:

−−→
F

(B)
j,b =

rBS − rFlyBSj∥∥rBS − rFlyBSj

∥∥ (2.15)

where the symbol rBS stands for the coordinates of the BS in the reference cell and rFlyBSj

represent coordinates of the FlyBSj. The operator ∥.∥ represents the evaluation of the

Euclidean distance.

The access force that originates in the UEi and acts on the FlyBSj is formulated as:

−−→
F

(A)
j,i =

pi
PFlyBS

rUEi
− rFlyBSj∥∥rUEi
− rFlyBSj

∥∥ (2.16)

where pi refers to the power budget allocated at the FlyBSj for the UEi. PFlyBS represents

the total power budget at the FlyBSj and rUEi
stands for the coordinates of the UEi in

the reference cell.

Altogether, the overall virtual force applied to the FlyBSj is then defined as the sum

of all virtual forces that act on the FlyBSj. This is expressed by the following formula:

−→
Fj =

−→
FB
j,b +

∑
i∈Uj

−→
FA
j,i (2.17)

where Uj represents the list of the UEs associated to the FlyBSj .

The vector of the overall virtual force expressed in (2.17) determines the direction in

which the FlyBS shall be shifted in order to reach an equilibrium where all the forces

acting on the FlyBS are balanced and where thus the overall virtual force is equal to 0.

2.4 Modified K-means Clustering

The K-means clustering algorithm is an algorithm that groups a set of analysed objects

into K clusters by iteratively minimizing the distances between the objects and the cluster

centroids by repositioning the cluster centroids and then associating the objects to the

closest cluster centroid. However, when applying this algorithm to the scenarios where

both the FlyBSs and the BS are deployed, the K-means algorithm introduces a major

defect. In each iteration, the positions of the cluster centroid are recalculated and updated.

This is applicable for the clusters that are served only by the FlyBSs, but as the position

of the BS should remain unchanged, the K-means algorithm tends to become less accurate

because the BS cannot follow the cluster centroid position. A possible solution for this
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defect could be removing the BS from the clustering algorithm. This would lead to

situations in which all the UE would be connected to the network via the relay links.

All UEs would be then associated to the FlyBSs. However, this would result in severe

overloading of the FlyBSs, Thus, this solution is not desired.

The work [12] proposes a modified K-means algorithm that addresses the above-

mentioned defect. This algorithm is, with minor adjustments, integrated in the pro-

posed final framework presented in this thesis. Alongside considering conventional clus-

ters whose centroid positions are updated in every iteration, this algorithm incorporates

an additional cluster around the static centroid in the centre of the reference cell where

the BS is positioned whose position remains unchanged throughout the whole algorithm

execution.

To evaluate the distance between the object in the reference cell for the purposes of the

modified K-means algorithm, the Euclidean distance is calculated. The distance between

the UEi and the BS is given as follows:

di,b = ∥rUEi
− rBS∥ (2.18)

where the operator ∥.∥ stands for the calculation of the Euclidean distance. The distances

between the UE and the FlyBSs are calculated analogically with the same principle.

The positions of the cluster centroid are recalculated and updated in every iteration

of the algorithm. The updated position of the cluster centroid k rk is determined by this

formula:

rk =

∑NUEk
i=1 rUEi

NUE,k

(2.19)

where NUE,k denotes the number of the UEs in the cluster k and −−→rUEi
denotes the position

coordinates of the UEi.

The modified K-means algorithm is described in Algorithm 1. As the input parameters,

the algorithm requires the number of FlyBSs in the reference cell NFlyBS and the positions

of the UEs RUE. Firstly, the number of clusters K is derived from the value of NFlyBS

in the line 1. The following step is to determine the centroid positions for every cluster

that is served by one of the FlyBSs and save them to the set Centroids. This is done by

electing a unique random position from RUE for each centroid (lines 2 to 4). The position

of the static centroid of the BS is then also saved to the set Centroids in the line 5.

After determining the initial centroid positions, the iterative part of the algorithm

follows. This is described by the while loop (lines 7 to 23). Each iteration of the while

loop is initiated with calculating the distances between the UE and each centroid (lines

9 to 12) and associating the UE to the closest centroid based on the calculated distances

via (2.18) (line 13). For this purpose, the association set A is defined. This procedure is
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executed for each UE from the set U in the lines 8 to 14. When all the UE associations are

updated, but no UE reassociation occurred, the association set A is considered final and

the algorithm is terminated (line 16). If at least one reassociation occurred, the positions

of the centroids are updated via (2.19) in the line 19 and algorithm’s while loop starts

from the beginning with a new iteration. After the initial clustering algorithm has ended,

the UEs are associated according to the final set of associations (lines 24 to 30).

Algorithm 1 Modified K-means algortihm

Require: NFlyBS,RUE

1: Number of clusters K ← NFlyBS + 1
2: for each k = 1:NFlyBS do
3: Centroids(k)← position of randomly elected UE from RUE

4: end for
5: Centroids(K)← position of the BS
6: Aprev ← 0
7: while true do
8: for each UE in U do
9: d← vector for storing distances between UE and FlyBS or BS

10: for each k in 1:K do
11: dk ←distance between UE and FlyBS or BS via (2.18)
12: end for
13: A(UE)← argmin(d)
14: end for
15: if A = Aprev then
16: break
17: else
18: for each k in 1:K do
19: Centroids(k)← new centroid position via (2.19)
20: end for
21: Aprev ← A
22: end if
23: end while
24: for each UE in U do
25: if A(UE) = K then
26: Associate UE with the BS
27: else
28: Associate UE with the FlyBSj where j = A(UE)
29: end if
30: end for
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2.5 Deep Neural Network Architecture

As thoroughly explained in [17], fundamental elements of the architecture of the DNNs are

neurons. The neurons are computation blocks that receive inputs and based on their inner

structure, the neurons produce an output. In Figure 2.3, a model of the inner structure

of the neuron n1 is presented. A set of Nin inputs from a previous layer is represented as

I = {in1,. . . , inNin
}, a set of Nw connection weights is represented as W = {w1,. . . ,

wNw}. The objective of the summation function is to bind the neuron inputs with the

weights of their connections and calculate their sum which later serves as the input to the

activation function. The letter b symbolizes the bias that is an additional parameter that

helps to adapt the summation function output to the activation function [17]. Finally,

the activation function is generally a non-linear mathematical function that determines

the scalar output of the neuron based on its input from the summation function [18], [19].

Figure 2.3: Inner structure of the neuron.

The output of the neuron is then calculated by the following formula [17]:

out = φ(

Nin∑
i=1

wi · ini + b) (2.20)

where out is the neuron output, Nin represents the number of the inputs, wi stand for the

i-th weight from the set of weights W, ini is the i-th input from the set of inputs I and b

is the value of the bias. Finally, φ is represents the activation function.

The neurons are typically organized into layers, including one input layer LIN , Nhidden

hidden layers stored in the set LHIDDEN = {h1,. . . ,hNhidden
} and one output layer LOUT
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that produces the final network output of the DNN, with each layer consisting of a dif-

ferent number of neurons. The neurons from neighbouring layers are interconnected via

the weighted connections described above as the set W. Figure 2.4 illustrates a general

example of the DNN. The input layer LIN consists of Ninput neurons, where Ninput is equal

to the number of the input parameters, so called DNN predictors, that are processed by

the DNN. The input layer is then connected to the first hidden layer h1. The hidden

layers are gradually interconnected and the last hidden layer hNhidden
is then connected to

the output layer LOUT . Finally, the output layer produces the output YDNN .

Also note the neuron n1, whose structure was described in Figure 2.3, is deployed in

Figure 2.4 as an element of the DNN.

Figure 2.4: Inner structure of the DNN.

The DNN is trained via a process of backpropagation. The backpropagation involves

taking an error that occurred during the final output prediction and sending information

about this error backwards through all the layers of the DNN. Based on the backpropa-

gation, the connection weight values are adjusted in order to reduce the error for the next

predictions [17], [19].



Chapter 3

Problem Formulation

The main objective of this thesis is to propose a solution that maximizes the total channel

capacity in the reference cell, in which one or more FlyBSs are deployed. In other words,

the objective is not to maximize the channel capacity offered to a specific UE, but to find

a solution that increases the overall sum of the channel capacities for all UEs located in

the reference cell. This objective is addressed by two principal approaches:

• optimizing the set of the positions of the FlyBSs RFlyBS in order to increase the

channel capacity mainly for the UEs connected to the network via the relay links,

• optimizing the set of associations of the UEs A in order to better balance the loads

of the FlyBSs and the BS.

Combining the above-mentioned approaches into a framework should improve the total

channel capacity in the system model and thus result in the improved overall performance

of the network. The objective of this thesis is then mathematically formulated as:

A,RFlyBS = argmax
A,RFlyBS

(

NUE∑
i=1

ci) (3.1)

{xmin, ymin, zmin} ≤ rFlyBS ≤ {xmax, ymax, zmax},∀FlyBS ∈ F (3.1a)∑
aUE = 1,∀UE ∈ U (3.1b)

aFlyBSBS
= 1 ∧ aFlyBSFlyBS

= 0, ∀FlyBS ∈ F (3.1c)

where ci is the channel capacity for the UEi and NUE represents the number of the UEs

in the reference cell. The constraint (3.1a) states that each FlyBS must be positioned

within the reference cell while the constraint (3.1b) restricts all the UEs to be associated

with either only one FlyBS or the BS. The constraint (3.1c) expresses that each FlyBS is

directly associated to the BS which means that there are not any multihop relay links in

the reference cell.

17



Chapter 4

Proposed Solution

In this chapter, the proposed solution to the problem formulated in Chapter 3 is presented.

The solution is focused on the two principal aspects: the optimization of the positioning

of the FlyBSs and the optimization of the association of the UEs to the FlyBSs and

potentially directly to the serving BS.

When addressing a complex problem, such as the mentioned optimization of the FlyBS

positioning and the UE association, a mathematical description of an optimal solution

could be overly complicated or it could be impossible to describe such solution mathe-

matically. The DNNs are capable of processing great amount input data, discover hidden

relations among input data and therefore estimate output values for complex problems

that cannot be analytically derived. For that reason, to find solutions that provide satis-

factory results for the mentioned positioning and associaiton problems, the characteristics

of the DNNs indicate that the DNNs are a promising approach to estimate the network

parameters and relations between the objects in the reference cell with which the DNNs

are capable of predicting an optmized UE association scheme and an optimized position-

ing of FlyBSs policy. Therefore, this thesis utilizes the DNNs to address the problem

formulated in Chapter 3.

This chapter is organized as follows. First, the FlyBS positioning subproblem is ad-

dressed. The solution is based on determining optimized coordinates for the deployed

FlyBSs utilizing a system of DNNs. Then, the UE association subproblem solution is

described in detail. The subproblem the UE association is also tackled using a DNN to

predict an optimized UE association scheme. The solutions for both the positioning and

the association subproblems are then combined into a framework that provides a joint

solution to the problem of maximizing the overall channel capacity.

18
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4.1 Positioning of Flying Base Stations

One of the two principal approaches addressing the main objective of maximizing overall

capacity of the UEs in the reference cell is the optimization of the positions of the deployed

FlyBSs. In the first part of this section, a concept of applying the virtual shift forces to

reposition the FlyBSs is introduced in order to shift the FlyBSs to an optimized location.

This is followed by the description of the structure of the DNNs which are trained to

determine the optimized locations of the FlyBSs in the reference cell based on the concept

of the mentioned virtual forces.

4.1.1 Shift Vector

Section 2.3 defines the system of the virtual backhaul and access forces that both act on

the FlyBSs. The access virtual force is described by the formula (2.16) which is based on

a ratio between the power allocated towards the UE from the FlyBS and the total power

budget of the FlyBS. However, as the power budget at the FlyBSj is distributed equally

among all the associated UEs, the equation (2.16) shall be simplified as:

pI
PF

=
1

NUEFlyBSj

(4.1a)

−−→
F

(A)
j,i =

1

NUEFlyBSj

rUEi
− rFlyBSj∥∥rUEi
− rFlyBSj

∥∥ (4.1b)

where NUEFlyBSj
stands for the number of the associated UEs at the FlyBSj.

The FlyBS shift vector is determined by the overall virtual force vector calculated by

(2.17) and represents the magnitude of the shift vector and the direction which the FlyBS

is shifted in to reach the force equilibrium. However, taking into account that all virtual

attraction forces are normalized, the magnitude of each virtual force
−−→
F

(A)
j,i and

−−→
F

(B)
j,b is

lower than or equal to 1. Therefore, the magnitude of the overall virtual force for the

FlyBSj cannot be greater than the number of associated UEs to the FlyBSj NUEFlyBSj
+1.

This is described in the following formula:

∀
∥∥∥∥−−→F

(A)
j,i

∥∥∥∥ ≤ 1 (4.2a)

∀
∥∥∥∥−−→F

(B)
j,b

∥∥∥∥ ≤ 1 (4.2b)

∥∥∥−→Fj

∥∥∥ =

∥∥∥∥−−→F
(B)
j,b

∥∥∥∥+
∑
i∈U

∥∥∥∥−−→F
(A)
j,i

∥∥∥∥ ≤ 1 +NUEFlyBSj
(4.2c)
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The equation (4.3) reflects the fact that the magnitude of the overall vector force has

generally a significantly lower value of its magnitude in comparison to the cell size and

therefore it would not be efficient to utilize the overall force vector as the FlyBS shift

vector. For the mentioned reason, the positioning step magnitude factor is introduced.

This parameter is used for scaling of the magnitude of the shift vector. The resulting shift

vector applied to the FlyBSj is then defined as:

−→vj = α
−→
Fj (4.3)

where −→vj represents the shift vector for the FlyBSj. As the FlyBS is allowed to move in all

three dimensions, the shift vector −→vj is defined as −→vj = {v1, v2, v3}. The symbol α stands

for the positioning step magnitude vector and
−→
Fj is the overall virtual force vector.

4.1.2 Positioning Deep Neural Networks

As the virtual forces are dependent on the positions of all the objects in the reference

cell, this solution is mostly suitable when the UEs provide their locations to the network.

However, in cases when the locations of the UEs remain unknown, it is impossible to

calculate the virtual forces with a tolerable accuracy. Therefore, it is necessary that

the problem is circumvented by exploitation of other available information that could be

gathered from the network, such as gains between the objects in the network, average

capacities that the FlyBSs are able to provide to their associated UEs, numbers of the

associated UEs to the FlyBSs etc. This work proposes a system of the DNNs to estimate

the resulting shift vector when the locations of the UEs are not known. The trained

system of the DNNs is stored in each FlyBS and controls the positioning of each FlyBS.

The aim of the proposed system of the positioning DNNs is to predict the shift vector

in whose direction the FlyBS shall be shifted in order to optimize its position and therefore

to increase the overall capacity of the network. Also, the system of the DNNs evaluates

potential benefits of repositioning the FlyBS according to the estimated shift vector in

terms of overall capacity increase. Hence, the proposed solution is composed of two DNNs

while each of them has a different function. As the coordinates of the shift vectors are

continuous values, predicting the shift vector can be seen as a regression problem and is,

thus, addressed by the regression positioning DNN. On the other hand, when it comes to

the shift vector evaluation, the binary classification positioning DNN is utilized to either

approve or reject the predicted shift vector. The scheme of the introduced system of

DNNs and their interconnection is presented in Figure 4.1.

When estimating the shift vector for the FlyBSj, the regression positioning DNN is

utilized in the first step. The regression positioning DNN receives the input data, processes
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it and as the output, it estimates the shift vector −→vj . Then, the coordinates of −→vj among

other input data are passed to the classification positioning DNN that is trained to predict

whether the repositioning of the FlyBSj according to the predicted shift vector−→vj increases
or decreases the overall capacity of the network. If the classification positioning DNN

estimates that the repositioning of the FlyBSj positively impacts the overall cell capacity,

it approves the shift vector −→vj by setting the output of the classification positioning DNN

Yclas to 1 and the FlyBSj is then repositioned accordingly. In the opposite case, the shift

vector is rejected and the FlyBSj remains in the same position as Yclas is set to 0.

To enhance the performance of the system, the positioning DNNs utilize a method of

recursion. As the coordinates of the shift vector are predicted by the regression positioning

DNN, the shift vector is then stored and at the moment of the subsequent shift vector

estimation, the previous shift vector is utilized as an input to the regression positioning

DNN in order to provide a more accurate shift vector estimation. This information about

their previous decision that is provided to the regression positioning DNN tends to enhance

the overall performance of the positioning DNNs.

Both positioning DNNs are trained with methods of supervised learning and are

trained based on offline-learning principles. The main benefit of offline learning is that

no online real-world network measurements are required because all necessary data for

training procedures are obtained from offline simulations. To attain objectives of the of-

fline supervised training, simulation scenarios in the network model have been executed

in order to obtain samples that together form training datasets. Each sample contains all

necessary information about the predictors and the targets for the DNNs.

The targets are predicted by the DNNs as the output values. The regression position-

ing DNN targets are the coordinates of the estimated shift vector −→vj , while the target of

the classification positioning DNN is a binary value Yclas which either approves or rejects

the estimated shift vector. This results in the output of the system of the DNNs Ypositioning

being either the approved shift vector −→vj in case Yclas = 1 or the empty vector {0, 0, 0} in
case of Yclas = 0 .

As explained above, when the UE locations are unknown, the aim of the DNN is to

utilize different network parameters to predict the optimized FlyBS positions. Therefore,

as an alternative to the UE locations, the set of predictors Predpositioning processed by

the positioning DNNs is defined. The set Predpositioning contains:

• the positions of the FlyBSs in the reference cell to acquire a better overview of the

distribution of the FlyBSs in the reference cell space,

• the gains between the FlyBSs to substitute the parameters of the distances between

the FlyBSs,
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• the gains between the FlyBSs and the BS,in the similarly as the previous parameters,

to substitute the parameters of the distances between the FlyBSs and the BS,

• the numbers of the UEs associated to each FlyBSs and the BS to estimate better

to loads of each FlyBSs and the BS,

• the average capacities of the UEs at each FlyBS to estimate better the loads of each

FlyBS and the BS,

• interference experienced by the FlyBSs to acquire better understanding of the im-

pacts of interference on the performance of the FlyBSs,

• the allocated power from the serving BS towards each FlyBS to better understand

the relations between the BS and the FlyBSs in terms of power allocation,

• the coordinates of the shift vector utilized in the previous utilization of the system of

the DNNs as the recursion method input. The DNNs shall predict a more accurate

shift vector as the DNNs are provided values of a previous shift vector.

The number of the FlyBSs in the reference cell is generally not fixed and is different in

different deployment scenarios. The inconstinency in the number of the FlyBSs generates

in a non-constant number of the predictors for the positioning DNNs. However, the posi-

tioning DNNs are not designed to accept a varying number of the predictors. Therefore,

for the sake of simplifying the complexity of the positioning subproblem, the number of

the FlyBSs considered by the positioning DNNs is fixed to 3 in order to secure a constant

number of the predictors for the positioning DNNs. In cases there are less than 3 FlyBSs

in the reference cell, the values of the predictors that require information from the absent

FlyBSs are set to 0. In cases in which there are more than 3 FlyBSs in the reference

cell, the FlyBSs considered by the DNNs are determined by the gains between the FlyBS

that is to be repositioned and the other FlyBSs. In particular, the FlyBS that is to be

repositioned and two FlyBSs with the largest gains towards the FlyBS that is to be repo-

sitioned belong among the considered FlyBSs. Information from the other FlyBSs is not

processed by the DNNs. If more FlyBSs were considered by the DNNs, the number of the

predictors would grow exponentially, which would significantly increase the complexity of

the DNNs and would result in overly long training times of the positioning DNNs. Thus,

the idea of considering only 3 FlyBSs is applied.

Both positioning DNNs utilized in the proposed framework are designed to have fully-

connected layers. As the activation function for the hidden layers, the rectified linear unit

(ReLU) activation function is utilized. However, as the positioning DNNs have different

types of outputs, more specifically, the regression positioning DNNs is supposed to produce
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Figure 4.1: The scheme of the system of the positioning DNNs.

continuous values and the classification positioning DNNs is supposed to produce binary

values, different activation functions are deployed for the output layers of the positioning

DNNs. The regression positioning DNN utilizes the linear activation function for its

output layers unlike the classification positioning DNN that uses the sigmoid activation

function. Both the regression positioning DNN and the classification DNN are composed

of 6 hidden layers with 128, 64, 32, 16, 8 and 4 neurons. The output layer of the positioning

DNN is followed by the output layer with 3 neurons each predicting one coordinate of

the shift vector −→vj . The output layer of the classification positioning DNN, on the other

hand, consists of a single neuron producing the binary value Yclas.

4.2 User Association

In this section, the principal concept of the UE association is described. The main ob-

jective of the UE association is to maximize the overall channel capacity in the reference

cell. As the performance of the UE association is dependent on the positions of the Fly-

BSs and the positions of the FlyBSs are changed throughout the optimization process, the

proposed concept consists of two phases. The first phase is the initial UE clustering based

on the distances between the UEs and the FlyBSs and the BS. The clustering process is

not optimal and is only utilized for the initial association. After the initial association

procedure, the DNN is utilized to predict the UE associations forcing the UEs to poten-

tially reassociate to one of the FlyBSs or the BS in order to increase the overall channel

capacity.



CHAPTER 4. PROPOSED SOLUTION 24

4.2.1 Initial Association

The objective of the initial association is to determine groups of the UEs that will be

associated to the same serving station, either the BS or one of the FlyBSs, in the reference

cell. To simplify the problem of the initial UE association procedure, the positions of the

UEs in the reference cell are considered known to the network for the phase of the initial

association and therefore the modified K-means clustering presented in Algorithm 1 is

used. For the reassociation phase described in Section 4.2.2, the coordinates of the UEs

remain unknown in order to simulate real-world scenarios more accurately.

Although the initial association scheme determined by the modified K-means cluster-

ing algorithm provides a reasonable distribution of the UEs among the FlyBSs, it is not

considered optimal. The association scheme takes into consideration only the distances

between the objects omitting other impacting parameters, such as the loads of the FlyBSs

or interference. The initial clustering algorithm associates the majority of the UEs to the

FlyBSs which generally results in overloading the FlyBSs causing the FlyBSs not being

capable of providing satisfactory channel capacities to the UEs. Moreover, the initial clus-

tering algorithm fully relies on the knowledge of the UE locations, thus it is not suitable

for scenarios in which the UE locations are not available to the network.

4.2.2 Reassocation Deep Neural Networks

The initial association algorithm utilizes information about the locations of the UEs in

order to perform the initial association. However, to optimize the association of the UEs

after the initial association, the proposed solution considers the UE locations unknown

and therefore works without any information about the coordinates of the UEs. When

the locations of the UEs are not known to the network, a promising option to substitute

information about the UE locations is to utilize other information known to the network in

a combination with the DNN. Hence, the proposed solution of the association subproblem

is to utilize the DNN to find relations between available information and to use these

relations to optimize the UE association procedure in the network.

Unlike in the solution of the positioning subproblem, only one DNN is trained to

optimize the UE association. As the UE association is described by discrete values – each

FlyBS has its own index, the values are not continuous and therefore the UE association

is perceived as a classification problem. For this reason, the multiclass-classification DNN

is trained to predict the optimal association of each UE in the network. The scheme of

the association classification DNN is presented in Figure 4.2.

Once the association classification DNN receives the input data, the input data is

processed and as the output Yassociation, the association DNN makes a prediction which
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FlyBS or the BS should be the UE associated to in order to secure the highest overall

channel capacity of the network. The association DNN can predict either reassociation to

another FlyBS or the BS or it can also predict that in terms of overall network capacity

the best option is to keep the UE association unchanged. Note that it does not necessarily

mean that the DNN predicts the association that secures the highest channel capacity for

the UE as it is not the main goal of the DNN.

In the similar way as the positioning DNNs, the association classification DNN is

trained with the methods of supervised learning and is trained based on the offline-

learning principles. Offline simulations in the network model have been executed in order

to obtain training datasets. For the association classification DNN, the target Yassociation

is the index of the FlyBS or the BS that the UE will be associated to. As considering

that the UE locations are unavailable for the network for this phase of the positioning

subproblem solution, the set of predictors Predassociation is defined as:

• the number of the UEs associated to each FlyBSs and the BS to estimate the loads

of each FlyBSs and the BS,

• the average capacities of the UEs at each FlyBS and the BS to estimate better loads

of each FlyBS and the BS in a similar way as the above-mentioned parameters,

• the gains between the FlyBSs, gains between the BS and the FlyBSs to estimate

better again the loads of each FlyBS and the BS,

• the gains between the UE and the FlyBSs and the BS to substitute the parameters

of the distances to the FlyBSs and the positions of the FlyBSs,

• interference experienced by the FlyBSs to better understand the impacts of inter-

ference on the performance of the FlyBSs,

• the allocated power from the BS towards the FlyBSs to understand the relations

between the BS and the FlyBSs in terms of power allocation in the reference cell,

• the index of the FlyBS or the BS that the UE is currently associated to in order to

provide information about the current association setup.

As the number of FlyBSs in the network is variable, the number of FlyBSs that are

considered by the DNN is reduced to 3 in a similar way as in the system of the positioning

DNNs. In case of the association DNN, the considered FlyBS are the three FlyBSs with

the largest gains towards the UE. If less than 3 FlyBSs are deployed in the reference cell,

the predictors that require information from the absent FlyBSs are set to 0. In case that

there are more than 3 FlyBSs in the reference cell, information from the FlyBSs that are
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not considered by the association DNN is discarded. If more FlyBSs are considered by

the DNN, the number of the predictors grows exponentially, which significantly increases

the complexity of the DNN which results in overly long training times of the positioning

DNNs. Thus, the idea of considering only three FlyBSs is applied again.

The association DNN is composed of fully-connected layers. As the activation function

for the hidden layers, the ReLU activation function is utilized. As the activation function

for the output layer, the classification association DNN use the sigmoid activation func-

tion. The classification association DNN is composed of 5 hidden layers with 128, 64, 32,

16 and 8 neurons respectively which are followed by the output layer that is composed of

4 neurons predicting the discrete value target Yassociation.

Figure 4.2: The scheme of the association DNN.

4.3 Final Framework

So far, both the positioning and the association subproblems have been addressed sepa-

rately. The proposed final solution combines both concepts together creating a general

framework that optimizes the overall channel capacity in the reference cell.

The final framework utilizes two DNNs for the positioning of the FlyBSs and one single

DNN for the association of the UEs as described in Section 4.1 and Section 4.2. However,

the DNNs do not operate separately but are interconnected and cooperate to enhance the

overall performance of the framework. The aim of the DNN interconnection is to provide

more input information to the DNNs that should lead to more accurate predictions and



CHAPTER 4. PROPOSED SOLUTION 27

therefore more optimized association and positioning decisions. The proposed scheme of

the interconnection of the DNNs is presented in Figure 4.3.

Figure 4.3: The scheme of the interconnection of the DNNs in the final framework.

The interconnection of the positioning DNNs and the cooperation between each other,

the principle of the DNN recursion is described in detail in Section 4.1.2. Furthermore,

the binary output ot the positioning classification DNN named Yclas is also mapped to

the input of the association DNN and serves as one of the predictors for the DNN. This

predictor equals 0 if the FlyBS that the UE is connected to was not repositioned in the

previous iteration of the algorithm. If the FlyBS was repositioned, the predictor is equal

to 1. In case of the UE being associated with the BS, the value of this predictor is auto-

matically set to 0. The objective of introducing this predictor is to provide information

summarizing if the position of the FlyBS which the UE is associated to was changed or not

to the association DNN. The repositioning of the FlyBSs changes the cell characteristics,

such as interference, gains among the UEs and FlyBS etc., therefore it serves as a valid

predictor for the association DNN.

In addition, the combined output of the association DNN is mapped to the input of the

regression positioning DNN and serves as two predictors for the DNN. The predictors fetch

information about the number of the UEs that were newly associated to the particular

FlyBS and about the number of the UEs that were reassociated to another FlyBS or to the

BS. In other words, the predictors carry information about the gained associations and

the lost associations. Collecting of these predictors is denoted as Reassociation counter



CHAPTER 4. PROPOSED SOLUTION 28

in Figure 4.3. These predictors should help to improve the accuracy of the positioning

DNNs predictions as the number of the associated UEs and by extension, the change of

this number greatly influences the final shift vector which the positioning DNNs aim to

predict.

The final framework is described in Algorithm 2. As the first step (line 1), the initial

clustering algorithm described in Algorithm 1 is executed determining the initial associ-

ation which is stored to the set of associations A. After that, each FlyBS is positioned

to the assigned cluster centroid and their location is stored in the set of positions RFlyBS

(lines 2 to 5). Subsequently, the capacities of the UEs are evaluated and stored in the set

of UE capacities C (line 6). This is followed by algorithm’s main loop. Every iteration

of the loop begins by storing the sets of the capacities C as Cprev, the set of associa-

tions A as Aprev and the set of the FlyBS positions RFlyBS as RFlyBSprev (lines 8 to 10)

determined either at the beginning of the execution of the algorithm or possibly in the

previous iteration of the algorithm. This is followed by the determination of the mean

of the UE channel capacities in the line 11. Then, the UEs are sorted according to their

channel capacities in the ascending way (from the UE with the lowest channel capacity

to the UE with the greatest channel capacity) in the line 12. This is followed by the

UE reassociation block (lines 13 to 20). For each UE, it is examined whether its channel

capacity is lower than the average channel capacity (line 14). If so, the association DNN

predicts the best association for the UE (line 15). If the predicted association differs

from the actual association (line 16), the set of associations A is updated and the UE is

reassociated accordingly (line 17). This block of the algorithm is repeated for each UE in

the reference cell.

This condition of applying the DNN association process only to the UEs whose channel

capacity is lower than the average channel capacity in the reference cell is introduced to

the algorithm due to occasional errors of the association DNN when the association DNN

does not predict a better association but predicts an association that actually decreases

the overall channel capacity in the reference cell. In cases when a wrong prediction output

is generated for the UEs with greater channel capacities, the channel capacity decrease

tends to impact the overall channel capacity more than cases when a wrong prediction

output is generated for the UEs with lower channel capacities. Therefore, the UEs with

greater channel capacities are omitted from the reassociation process. The threshold

of the average capacity in the reference cell that determines which UE undergoes the

reassociation process was determined by the trial-error approach.

The UE reassociation block is followed by the FlyBS repositioning block (lines 21 to

28). For each FlyBS, the regression positioning DNN predicts the shift vector (line 22)

which is evaluated by the classification repositioning DNN (line 23). If the classification
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DNN predicts that the shift vector will increase the overall channel capacity in the ref-

erence cell (Yclas equals 1), the FlyBS is repositioned according to the shift vector and

the new position of the FlyBS is stored to the set of FlyBS positions (lines 24 to 26).

This procedure is repeated for each FlyBS in the reference cell. After that, the capacities

for the UEs are again evaluated (line 29) and are compared to the capacities obtained in

the previous iteration of the while loop. If the sum of the newly obtained capacities is

lower than or equals the capacities from the previous iteration, the algorithm is termi-

nated (lines 30 and 31). As the output, the sets of UE associations Aprev, FlyBS positions

RFlyBSprev and the set of capacities Cprev from the previous iteration are returned.

Algorithm 2 Final Framework

1: A← Perform initial association via Algorithm 1
2: for each j = 1:NFlyBS do
3: rj ← Centroid(j)
4: RFlyBS(j)← rj
5: end for
6: C← evaluate UE channel capacities
7: while true do
8: Cprev ← C
9: Aprev ← A
10: RFlyBSprev ← RFlyBS

11: Cmean ← calculate average UE capacity in the cell
12: Usorted ← sort UEs according to their channel capacity in the ascending way
13: for each UE in Usorted do
14: if C ≤ Cmean then
15: Yassociation ← perform association prediction
16: if A(UE) ̸= Yassociation then
17: A(UE)← Yassociation

18: end if
19: end if
20: end for
21: for each FlyBS in F do
22: Shift vector ← perform shift vector prediction via regression positioning DNN
23: Yclas ← perform shift vector evaluation via classification positioning DNN
24: if Yclas == 1 then
25: rFlyBS ← reposition the FlyBS according to the shift vector
26: RFlyBS(FlyBS)← rFlyBS

27: end if
28: end for
29: C← evaluate UE channel capacities
30: if

∑
C ≤

∑
Cprev then

31: break;
32: end if
33: end while
34: Return Aprev, RFlyBSprev and Cprev



Chapter 5

Performance Evaluation

In the first section of this chapter, the parameters of the simulation model are stated.

This is followed by the description of the competitive schemes against which the proposed

framework is compared. Finally, the performance evaluation metrics are defined.

5.1 Simulation Model Description

The system model described in Chapter 2 is designed in MATLAB. For the purposes of

this thesis, the reference cell is square-shaped with dimension lengths of 1000 × 1000 m.

The reference cell is served by 1 BS that is located in the cell centre. The reference cell is

surrounded by 4 neighbouring cells. The neighbouring cells are introduced to the model

to simulate inter-cell interference. Each of these cells is represented by 1 BS. The distance

between the neighbouring BSs and the borders of the reference cell is 600 m.

The altitude of BS transceivers is fixed to 30 m. Similarly, the altitude of UE

transceivers is fixed to 1.5 m. Unlike altitudes of the BS and the UE transceivers, the

altitudes of FlyBSs are not fixed and change in the simulations. However, the altitudes of

FlyBS must be higher than 10 m. This constraint is introduced in order to avoid possible

collisions with obstactles in the cell and to avoid disturbing the mobile network users.

The power budget of the BS is defined as 30 dBm and the power budget of each FlyBS

is defined as 23 dBm. The carrier frequency for communication among all the objects

in the reference cell is 3.5 GHz with the bandwidth of 40 MHz. Also, for interference

purposes and thermal noise simulations, the value of the noise spectral density is set to

-174 dBm/Hz. The above-mentioned parameters are summarized in Table 5.1. Figure 5.1

shows the scheme of the system with the defined model parameters.

30
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Table 5.1: The network model parameters

Parameter Symbol Value Description

Cell dimension lengths d1, d2 1 × 1 km Lenghts of cell dimensions

BS height zBS 30 m
Altitude in which the BS

transceiver is positioned

UE altitude zUE 1.5 m
Altitude in which the UE

transceivers are estimated

FlyBS altitude constraint zmin 10 m
The lowest altitude the FlyBS

is allowed to be located at

BS power budget PBS 30 dBm
Total downlink transmission

power available at the BS

FlyBS power budget PFlyBS 23 dBm
Total downlink transmission

power available at the FlyBS

Carrier frequency f 3.5 GHz
Central frequency of

the communication band

Cell bandwidth B 40 MHz
Total bandwidth of

the reference cell

Noise spectral density σ -174 dBm/Hz
Noise spectral density

calculated in dBm

In the simulated scenarios, the number of the FlyBSs in the reference cell is not fixed

and ranges between 1 and 10 and the number of the UEs in the reference cell varies

between 20 and 100. The value of the positioning step magnitude factor is 100. This

factor is used for scaling of the repositioning shift vector defined in (4.3). Table 5.2

summarizes the simulation parameters.

Table 5.2: The simulation parameters

Parameter Symbol Value Description

Number of UEs NUE 20 to 100
Total number of UEs located

in the reference cell

Number of FlyBSs NFlyBS 1 to 10
Total number of FlyBSs

deployed in the reference cell

Positioning step

magnitude factor
α 100

Parameter that increases the

FlyBS shift vector magnitude
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Figure 5.1: The parameters of the network model.

5.2 Competitive Schemes

With the aim of acquiring a better perspective of the performance of the proposed solution,

the final proposed framework is compared to the following competitive schemes in the final

simulations.

System of Separate DNNs

This competitive scheme utilizes the DNNs to optimize the positioning of the FlyBSs

and the association of the UEs the reference cell in a similar manner as the proposed

final framework. The scheme utilizes the regression positioning DNN to estimate the

optimized shift vector and the association DNN whose objective is to predict the optimized

UE association. But unlike the proposed final framework, this competitive scheme does

not utilize advanced recursion methods, such as utilizing the shift vector estimated in

the previous iteration of the algorithm as a predictor for the regression positioning DNN.

Also, the classification positioning DNN is removed from this competitive scheme. Besides

that, the association DNN and positioning DNN function in a separate way. In the final

framework, the association DNN and the positioning DNN exchange information about

the positioning status and the number of the lost and gained connections. However, as

a consequence of the separation of the two domains in this scheme, the association DNN
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and the positioning DNN are not interconnected which means that they do not exchange

any information.

K-means Clustering

In this competitive scheme based on the work presented in [20], the UEs are grouped into

the clusters based on their distances from the centroids via the principles of K-means

clustering described in Algorithm 1. Each cluster is served by a single FlyBS that is

located in the cluster centroid with the exception of one static centroid that is located

in the centre of the reference cell and is served by the BS. Although this competitive

scheme distributes the UEs among the FlyBSs and the BS and the positions the FlyBS in

the reference cell space are determined with reasonable logic, as the K-means algorithm

does not consider other parameters influencing the performance of the cell such as power

budgets, the scheme generally results in in the FlyBSs being overloaded.

Greedy Algorithm

The greedy algorithm scheme based on the algorithm presented in [21] aims to maximize

the channel capacity for each UE individually. All the FlyBSs are first positioned to

the centroids determined by the K-means clustering algorithm. Subsequently, the UEs

individually analyse all the possible associations and select the association where the UE

is provided the best channel capacity. This leads to the association decision logic being

transferred from the network directly to the UEs.

However, the greedy algorithm presents various drawbacks. The process of the UE

finding the association with the highest channel capacity is not governed by the network

which has a better overview of the network association parameters, such as interference

or how loaded the FlyBSs are. Also, each UE analyses all the possible associations which

leads to the algorithm being much more time-consuming compared to the other compet-

itive schemes. Therefore, utilizing the greedy algorithm applied to all UEs that consider

every FlyBS in the reference cell as a potential association target is highly inefficient from

perspective of the long computation times and the long convergence times. This leads

to the fact that the greedy algorithm cannot be easily implemented in the real-world

scenarios. Therefore, for the purposes of this thesis, 3 simplified versions of the greedy

algorithm are presented:

• the greedy algorithm that is not applied to all the UEs in the reference cell, but

only to 25 % of the UEs with the lowest channel capacity, considering all FlyBSs in

the reference cell when making an association decision (denoted as Greedy25 - all

FlyBSs),
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• the greedy algorithm that is again applied only to 25 % of the UEs with the lowest

channel capacity considering only 3 nearest FlyBSs in the reference cell when making

an association decision (denoted as Greedy25 - 3 nearest FlyBSs),

• the greedy algorithm that is applied to all the UEs in the reference cell considering

again 3 nearest FlyBSs when making an association decision (denoted as Greedy100

- 3 nearest FlyBSs).

Regarding the performance evaluation presented in Chapter 6, it is demonstrated that

the greedy algorithms applied only to 25 % of the UEs with the lowest channel capacity

deliver similar results regardless if all the FlyBS or only 3 nearest FlyBSs are considered

in the reassociation process. It is then deduced that the number of the considered FlyBSs

does not have a significant impact on the performance of the greedy algorithm as the

FlyBSs that are near to the UEs tend to offer higher channel capacities compared to

other distant FlyBSs.

On the other hand, the greedy algorithm that is applied to all the UEs in the reference

cell reports a significantly better performance in terms of the overall channel capacity than

the other greedy algorithms. This leads to the conclusion that the number of the UEs

that the greedy algorithm is applied to significantly influences the performance of the

greedy algorithms. However, the increasing number of the UEs that the algorithm is

applied to rapidly increases the complexity and the convergence times. This leads to the

greedy algorithms being practically unusable in the real-time scenarios, even if the greedy

algorithm is applied to a fraction of the UEs in the reference cell.

5.3 Performance Metrics

In order to evaluate the performance of the proposed solution and the other competitive

schemes, it is necessary to define the metrics that the performance evaluation will be

based on. As the problem formulation defined in Chapter 3 states, the main objective

of the proposed solution is to maximize the overall channel capacity in the reference cell.

This is mathematically expressed as:

Ctotal =

NUE∑
i=1

ci (5.1)

where Ctotal is the overall channel capacity in the reference cell, NUE stands for the number

of the UEs in the reference cell and ci represents the channel capacity of the UEi.

What is also considered important, is how the channel capacities of the UEs vary in

the reference cell. To evaluate the proposed solution and to compare it with the other
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competitive schemes, Jain’s fairness index is introduced. Jain’s fairness index is expressed

by the following formula:

IJain =
(
∑NUE

i=1 ci)
2

NUE

∑NUE

i=1 c2i
=

1

1 + ĉv
2 =

1

1 + (σ
µ
)2

(5.2)

where IJain stands for Jain’s fairness index, NUE is the number of the UEs in the reference

cell, ci represents the capacity of the UEi, ĉv is the coefficient of variation, σ is the standard

deviation of the set of the channel capacities and µ stands for the mean of the set of the

channel capacities.

Also, to better understand the UE association policies, the performance metric showing

the rate of the UEs in the reference cell associated to the FlyBSs is introduced. This is

formulated as:

φassociation =
NUE FlyBS

NUE

(5.3)

where φassociation stands for the rate of the UEs associated to the FlyBSs, NUE FlyBS

represents the number of the UE associated to the FlyBSs and NUE is the number of the

UEs in the reference cell.

Finally, the last metric that represents the average number of the UEs that are asso-

ciated per FlyBS is defined. This metric is expressed by the following formula:

NUE/F lyBS =
NUE FlyBS

NFlyBS

(5.4)

whereNUE/F lyBS stands for the average number of UEs associated to one FlyBS,NUE FlyBS

represents the number of the UEs associated to the FlyBSs and NFlyBS is the number of

the FlyBSs in the reference cell.



Chapter 6

Simulation Results

In this chapter, the performance of the proposed solution framework is evaluated ac-

cording to the defined performance metrics. The framework is also compared with the

competitive schemes described in the previous chapter. To evaluate the performance of

the proposed framework and to compare it with the competitive schemes, 100 different

simulations were executed for each simulation scenario. The positions of the UEs were se-

lected randomly at the beginning of each simulation and remained unchanged throughout

the whole simulation.

6.1 Overall Channel Capacity

The main objective of the thesis is to maximize the sum of the channel capacities in

the reference cell. Figure 6.1 displays this metric in two performance evaluation graphs.

In Figure 6.1a, describing the overall channel capacity dependence on the number of

the FlyBSs while the number of the UEs is fixed, the schemes utilizing the DNNs (the

proposed framework and the system of separate DNNs) and the greedy algorithm applied

to all the UEs report a gradual increase in the overall channel capacity.

On the other hand, the other competitive schemes (the greedy algorithms applied to

25% of the UEs and the K-means algorithm) report increases in their overall channel

capacities only when NFlyBS > 3. This anomaly is caused by the following sequence of

reasons. The K-means clustering algorithm associates the UEs to the FlyBSs or the BS

only based on the distances and does not take into account other parameters, such as

how loaded the FlyBSs already are. Then, relatively many UEs are associated to the

FlyBSs, and therefore the FlyBSs are able to allocate significantly low power to the UEs,

which leads to the low channel capacities for the UEs associated to the FlyBSs caused by

overloading of the FlyBSs. The access link, therefore, serves as a bottleneck. If there are

two FlyBSs deployed in the reference cell, compared to the scenario with only one FlyBS,

36
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(a) NFlyBS dependence, NUE = 75 (b) NUE dependence, NFlyBS = 5

Figure 6.1: Overall channel capacity depending on the number of FlyBSs and UEs.

there are noticeably more UEs associated to the FlyBSs, that is, there are generally more

UEs in the network with a low channel capacity, and therefore the overall capacity is

worse. However, as the number of the FlyBSs in the reference cell continues to increase,

each FlyBS tends to have fewer associated UEs. The FlyBSs are then able to allocate

more transmission power for each UE, and therefore the total capacity starts to increase.

And as the greedy algorithms that are applied to 25% of the UEs utilize the K-means

algortihm as their initial clustering algorithm, these greedy algorithms are also impacted

by this anomaly. The greedy algorithm applied to 100% of the UEs does not report a

similar behaviour because it tends to reassociate the majority of the UEs to the BS as

observed in Section 6.3.

Also, note that there is no significant difference in the performances between the cases

when the greedy algorithm applied to 25% of the UEs considers only 3 nearest FlyBSs

and when all FlyBSs are considered as an reassociation option. Both algorithms report

the identical performance, therefore their curves overlap in Figure 6.1a. This is caused

by the fact that the UEs tend to reassociate to the FlyBSs that are nearby and not to

the other distant FlyBSs. Therefore, thelimitation of considering only a limited number

of the FlyBSs does not impact the overall performance of the algorithm while reducing

the computation time and the complexity.

As illustrated in Figure 6.1a, the proposed framework generally outperforms the other

competitive schemes in terms of the overall channel capacity maximization. The system of

the separated DNNs is outperformed by up to 11%. The percentage difference generally

decreases with the increasing number of the FlyBSs in the reference cell as the final

framework and the system of the separated DNNs seem to converge to similar results.

For NFlyBS ≥ 6, the greedy algorithm applied to all the UEs also reports very similar

results as the final framework converging to similar values. For NFlyBS < 6, the greedy
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algorithm applied to all the UEs is outperformed by the final framework by up to 16%.

The greedy algorithms applied to 25% of the UEs are outperformed by the final framework

by up to 31% for all cases, except for the case when NFlyBS = 1. Finally, the K-means

algorihm shows the lowest overall capacity for all simulation scenarios, being outperformed

by the proposed framework by 19% - 95%.

Figure 6.1b illustrates how the overall channel capacity differs with the varying number

of the UEs. The proposed final framework generally outperforms the other competitive

schemes (for NUE ≥ 40) and is the only scheme that is capable of maintaning the value

of the overall channel capacity with the increasing number of the UEs in the reference

cell. All the greedy algorithms and the system of the separated DNNs report the highest

values of the overall channel capacity for NUE = 40. In cases with a greater number

of the UEs in the reference cell, the mentioned schemes report gradual decreases in the

overall channel capacity with the the greedy algorithm applied to all the UEs delivering

generally better results than the other greedy algorithms and the system of the separated

DNNs. The K-means algorithm reports the lowest values from all compared schemes for

all simulation scenarios and also does not perform well in maintaining the overall channel

capacity with the increased number of the UEs in the reference cell. This may be caused

by the fact that with the increased number of the UEs, the FlyBSs associate too many

UEs and therefore are not capable of allocating the sufficient power towards each UE

which leads to insufficient channel capacities in the access links.

Both greedy algorithms applied 25% of the UEs again follow the same trend and only

report minor differences in the overall channel capacity performance. It is also observed

that the result curves of the final framework and the greedy algorithms applied to 25% of

the UEs are not flattened. This could by caused by an insufficient number of the executed

simulations.

All the greedy algorithms deliver higher overall channel capacity for the case when

NUE = 20 outperforming the proposed framework by 9%. However for the simulation

cases when NUE ≥ 50, the final framework outperforms all the other competitive schemes.

More specifically, the system of the separated DNNs is outperformed by up to 14%, the

greedy algorithms applied to 25% of the UEs by 5%-17%, the greedy algorithm applied

to all the UEs by up to 5% and the K-means clustering by 27% - 70%. The values of the

percentages showing how much the final framework outperforms the other competitive

schemes generally increase with the increasing number of the UEs in the reference cell.
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6.2 Jain’s Fairness Index

In order to acquire a better overview of how the channel capacities in the reference cell are

distributed, Jain’s fairness index was defined. Figure 6.2 shows the performance evaluation

of the proposed final framework and the competitive schemes based on mentioned Jain’s

fairness index.

In Figure 6.2a, describing the dependence of Jain’s fairness index on the number of

FlyBSs, the proposed final framework, the system of the separated DNNs and the greedy

algorithm applied to all the UEs present a steady growth of the value of Jain’s fairness

index with the proposed framework presenting slightly better results between NFlyBS = 2

and NFlyBS = 5. For greater number of the FlyBSs, all the greedy algorithms converge

to the similar values of Jain’s fairness index as the final framework and the system of

separated DNN while the K-means algorithm delivers significantly lower values of Jain’s

fairness index compared to the other schemes.

Both greedy algorithms applied to 25% of the UEs report identical results in terms of

Jain’s fairness index and together with the K-means algorithm follow a similar trend as in

Figure 6.1a with the decrease of the analysed metric between NFlyBS = 1 and NFlyBS = 3

and the increase for NFlyBS > 3. This anomaly correlates with the explanation provided

in Section 6.1. Deploying a small number of FlyBSs, such as in this case 2 or 3, leads

to the overloading of the FlyBSs. As the FlyBSs are overloaded, the UEs are allocated

with insufficient power from the FlyBS which results in low capacities that are provided

to the UEs that are associated to the FlyBSs. On the other hand, the UEs associated

directly with the BS benefit from this situation and are provided with significantly greater

channel capacities. This results in low values of Jain’s fairness index. However, when more

FlyBSs are deployed, the number of UEs associated with each FlyBS decreases causing

less overloading of the FlyBSs. Therefore, the differences between the channel capacities

in the reference cell are reduced which is also followed by the increase of Jain’s fairness

index. This anomaly does not affect the greedy algorithm applied to all the UEs as this

algorithm tends to associate the majority of the UEs to the BS.

As displayed in Figure 6.2a, the proposed final framework provides significantly more

fair distribution of the channel capacities to the UEs than the K-means algorithm. This

means that K-means algorithm is outperformed by the proposed final framework in all

FlyBS counts. The proposed final framework outperforms the K-means algorithm by 11%

- 106%. Both the system of the separate DNNs and all the greedy algorithms outperform

the final framework in the case when NFlyBS = 1, however when the number of FlyBSs

stays between NFlyBS = 2 and NFlyBS = 5, the system of the separate DNNs, the greedy

algorithm applied to all the UEs and the greedy algorithms applied to 25% of the UEs

deliver worse results in terms Jain’s fairness index than the proposed final framework by
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(a) NFlyBS dependence, NUE = 75 (b) NUE dependence, NFlyBS = 5

Figure 6.2: Jain’s fairness index depending on the number of FlyBSs and UEs.

2% - 5%, 1% - 6% and 7% - 24% respectively. For cases when NFlyBS > 5, the proposed

final algorithm, all the greedy algorithms and the system of the separate DNNs converge

and deliver very similar values of Jain’s fairness index.

As shown in Figure 6.2b, that demonstrates the dependence of Jain’s fairness index

on the number of the UEs, the values of Jain’s fairness index slightly increase for the final

framework with the increased number of the UEs in the reference cell until NUE ≤ 50.

After that, a gradual decrease in the value of Jain’s fairness value is observed. A very

similar trend is also observed for the system of the separated DNNs. Unlike that, all the

greedy algortihms report a decreasing trend for Jain’s fairness index with the increased

number of the UEs throughout all simulation scenarios, with the greedy algorithm applied

to all the UEs reporting the best overall performance results in terms of Jain’s fairness

index. The decreasing trend is also reported by the K-means algorithm that delivers

the worst results in terms of Jain’s fairness index compared to the other competitive

schemes. The decreasing trend with the increased number of the UEs corresponds with

the explanation of the decreasing trend of the overall channel capacity provided in Section

6.1 as the general differences in capacities between the UEs associated to the FlyBSs and

the UEs associated directly to the BS may be significant.

Figure 6.2b demostrates that the final proposed framework provides more fair UE

channel capacity distribution than the K-means algorithm by up to 64%. For NUE ≤ 40,

the final framework is outperformed by the greedy algorithms as well as the system of the

separated DNNs. For NUE > 40, the greedy algorithms applied to 25% of the UEs, which

again present almost identical results throughout the simulations, are outperformed by

the final framework by up to 8%. Finally, the overall best performance of Jain’s fairness

index is reported by the greedy algorithm applied to all the UEs in cases when the number

of the UEs varies in the simulations.
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6.3 UE-FlyBS Association Rate

To analyse how the proposed framework and the other competitive schemes approach

the UE association, the rate between the UEs connected via the relay links and the UEs

connected to the network directly is inspected in this section. Figure 6.3 displays the

percentage of the UEs that are associated to the FlyBSs, thus connected to the network

via the relay links.

Figure 6.3a shows how the UE-FlyBS association rate differs with the varying number

of the FlyBSs. It could be said that when the number of the FlyBSs in the reference cell

increases, a greater percentage of the UEs is associated to the FlyBSs. For the K-means

algorithm and the greedy algorithms applied to 25% of the UEs, the percentage of the UEs

associated to the FlyBSs rapidly grows until NFlyBS = 3. With more FlyBSs deployed in

the reference cell, both the K-means algorithm and the greedy algorithm report only a

steady growth of approximately 2% per added FlyBS. Both greedy algorithms applied to

25% of the UEs again report identical values as the UEs do not tend to associate to the

distant FlyBSs. It is also observed that the K-means algorithm establishes significantly

more relay links, in other words more UE-FlyBS associations, in comparison with the other

competitive schemes. The final framework and the system of the separated DNNs follow

the same trend in the results steadily increasing the percentage of the UEs associated with

the FlyBSs. For lower numbers of the FlyBSs in the reference cell, the greedy algorithms

applied to 25% of the UEs associates significantly more UEs to the FlyBSs than the

final framework. However, as the number of FlyBSs increases, the percentage of the UEs

associated to the FlyBSs converge to similar values for the final framework, the greedy

algorithms applied to 25% of the UEs and also for the system of the separated DNNs.

Finally, the greedy algoritm applied to all the UEs associate the lowest number of the

UEs to the FlyBSs in comparison with the other competitive schemes.

As observed in Figure 6.3b, which shows the UE-FlyBS association rate dependence

on the number of the UEs, the percentage of the UEs associated to the FlyBS gradu-

ally decreases with the increased number of the UEs in the reference cell for the final

framework. This may be caused by the DNNs preventing the FlyBSs from overloading.

On the other hand, the K-means algorithm and the greedy algorithms applied to 25% of

the UEs maintain the percentage of the UEs associated to the FlyBSs at approximately

86% and 62% respectively. The system of the separated DNNs increases the UE-FlyBS

association rate with the increased number of the UEs until NUE = 40 and then a gradual

decrease is observed until NUE = 80. This is followed by an increase of the UE-FlyBS

association rate for cases NUE ≥ 90. As observed, the greedy algortihm applied to all the

UEs associate the lowest number of the UEs to the FlyBSs for NUE ≥ 40.
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(a) NFlyBS dependence, NUE = 75 (b) NUE dependence, NFlyBS = 5

Figure 6.3: UE-FlyBS association rate depending on the number of FlyBSs and UEs.

Considering the overall channel capacity results in Section 6.1 and the percentage of

the UE associated to the FlyBSs discussed in this section, it is deduced that the K-means

algorithm overloads the FlyBSs with too many UE associations, which leads to worse

overall channel capacities and therefore to worse overall performance.

6.4 Average Number of UEs per FlyBS

Finally, the average number of the UEs per FlyBS is discussed. In the similar manner

as the metric of the rate of the UEs associated to the FlyBSs in Section 6.3, this metric

analyses the UE association policy of the final framework and the competitive schemes.

Figure 6.4 shows the dependency of the average number per FlyBS on the number of the

FlyBSs and the number of the UEs in the reference cell.

Figure 6.4a shows the results of the average number of the UEs per FlyBS with the

varying number of the FlyBSs. The results correspond to the results presented and

described in Section 6.3. The average number of the UEs per FlyBS is highest for the K-

means algorithm and decreases with the increasing number of the FlyBSs in the reference

cell. The final framework keeps lower values of the number of the UEs per FlyBS for all

the simulation scenarios in comparison with the system of the separated DNNs and the

greedy algorithms applied to 25% of the UEs with the exception for NFlyBS = 1 where it

reports higher values than the system of the separated DNNs and the greedy algorithm.

The greedy algorithms applied to 25% of the UEs associate the lowest number of the UEs

per FlyBS for NFlyBS = 1, but for NFlyBS = 2 and NFlyBS = 3 the number of associated

UEs per FlyBS rapidly increases. However, in cases NFlyBS > 3, the number of the

associated UEs per FlyBS reports a steady decrease and converges to similar values as

the final framework for NFlyBS > 8. Finally, the greedy algorithm applied to all the UEs
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(a) NFlyBS dependence, NUE = 75 (b) NUE dependence, NFlyBS = 5

Figure 6.4: Average number of UEs per FlyBS depending on the number of FlyBSs and
UEs.

associates the lowest number of the UEs to the FlyBSs, however the association rate of

this algorithm converges to similar values as the final framework for the higher numbers

of the FlyBSs.

In the similar way as deduced in the previous section about the percentage of the UEs

associated to the FlyBSs, the K-means algorithm establishes more UE-FlyBS associations

overloading the FlyBSs that are then unable to provide sufficient channel capacities for

the associated UE which leads to the poor performance of in terms of the overall channel

capacity in comparison with the other competitive schemes.

In Figure 6.4b the dependence of the average number of the UEs per FlyBS on the

number of the UEs in the reference cell is observed. As expected, the average number

of the UEs per FlyBS on the number of the UEs increases with the increased number of

the UEs. The K-means algorithm reports the highest number of the UEs per FlyBS for

all simulation scenarios. This is followed by the greedy algorithms applied to 25% of the

UEs, the system of the separated DNNs, the final framework and the greedy algorithm

applied to all the UEs. The results correspond to the results shown in Section 6.3.
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Conclusion

The objective of this thesis was to propose a solution that maximizes the overall channel

capacity in the mobile network cell where the concept of utilizing the FlyBSs is deployed.

The aim of the proposed solution was to optimize the positions of the FlyBSs and the

UE associations in order to satisfy the objective of the thesis. For this purpose, a novel

framework incorporating the system of the interconnected DNNs was proposed.

The solution is based on addressing the FlyBS positioning and the UE association

subproblems in separate ways before combining the solutions of both subproblems into

the final framework. The FlyBS positioning subproblem is analysed and then addressed

by the system of DNNs whose aim is to predict and then evaluate the shift vectors in whose

directions the FlyBSs are repositioned in order to increase the overall channel capacity

in the reference cell. The UE association subproblem is also addressed by the DNN that

aims to optimize the UE association scheme in the reference cell by predicting the best

UE associations for the determined UEs in order to increase the overall channel capacity

and therefore increase the overall performance of the network. Later, the solutions of

both the positioning and association subproblems are combined into the final framework

in the way that the positioning DNNs and the association DNN are interconnected and

share information in order to enhance their prediction accuracies.

The performance of the proposed solution has been evaluated and compared with

other competitive schemes based on multiple metrics. When evaluating the overall chan-

nel capacity, which is the principal performance metric defined in the thesis, the proposed

framework outperforms the competitive schemes by up to 14% - 95% depending on the

simulation scenarios. Finally, when evaluating the fairness of the channel capacity distri-

bution based on Jain’s fairness index, the proposed solution outperforms the competitive

schemes by up to 5% - 106%.

The proposed framework considers only static UEs. The future research could explore

the complexity of considering UEs that do change their positions throughout the simu-
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lations. Another possible direction of enhancing the outcomes of this thesis is to study

benefits of applying principles of unsupervised learning algorithms to the UE association

as the unsupervised learning methods, such as reinforcement learning, are a promising

way how to find optimized solutions for comprehensively addressing the UE association

without a necessity to apply the DNN association prediction decision to each UE sepa-

rately. Finally, future research could be focused on more profound interconnection and

interaction between the deployed DNNs as the DNNs would be then potentially capable

of identifying more hidden relations in the processed data and, therefore, providing more

accurate predictions enhancing the overall system performance.



Appendix A

Attachments

For this thesis, MATLAB R2022a and Jupyter Notebook 7.0.5. were used. The MATLAB

M-files, the Jupyter ipynb files and the DNN models (stored as h5 files) developed for the

purposes of this thesis are attached. The attached files and models are divided into folders

based on their main purposes and functions The folders are sorted in a logical order that

follows the steps that were consecutively taken in order to fulfill the main objectives of

the thesis. The contents of the folders are summarized in the subsections below.

All the attached files are executable in the specified environments (MATLAB R2022a

and Jupyter Notebook 7.0.5.). The codes in the attached files are commented in order

to provide a sufficient support when executing the files. Note that for the execution of

the majority of the MATLAB files, the MATLAB Parallel Computing Toolbox [22] and

MATLAB Deep Learning Toolbox [23] are required.

1. Training Datasets Generation

As the first step, it is necessary to generate the datasets that are later used for the

training of the DNNs models. This folder, therefore, contains the MATLAB files used

for running the simulations in order to generate the training datasets (saved as csv files).

As 3 different DNNs are deployed in the final framework, the folder contains 3 separate

M-files, each used to generate the training dataset for a different DNN.

The folder also contains 2 subfolders - Classes and Functions. The M-files that are in

Classes folder define the network object types and the system model. The M-files that

are in Functions folder define blocks of code that are used repetitively in the code execu-

tion and therefore it is reasonable for the code transparency to save them as MATLAB

functions.

46
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2. Dataset Preparations & DNN Training

When the training datasets are generated, it is time to prepare the datasets for the DNN

training and execute the DNN training procedures. Therefore, this folder contains ipynb

files runnable in Jupyter Notebook used for the preparations of the datasets for the DNN

model training and ipynb files used for the DNN training procedures. The mentioned

files are divided according to their functions into subfolders DNN dataset preparation files

and DNN training files. Each subfolder contains 3 files, each corresponding to one of the

DNNs.

The folder also contains examples of the training datasets generated in the previous

step used for the DNN training that are stored in the folder Training datasets. The

example datasets each contain 10000 training samples which is generally not a sufficient

number of training samples for a proper DNN training. However, as the example datasets

serve only for demonstration purposes, the number of samples is considered sufficient.

3. Final Framework DNN Models

This folder contains 3 DNN models deployed in the final framework that were trained

by executing the ipynb files earlier. Also, as the models require data scaling, this folder

contains corresponding data scaling parameters saved as txt files for each DNN model.

4. Separated DNNs Models

This folder contains 2 DNN models deployed in the competitive scheme System of the

separated DNNs that were trained by executing the ipynb files earlier. Also, as the models

require data scaling, this folder contains corresponding data scaling parameters saved as

txt files for each DNN model.

5. Performance Evaluation

Finally, when the DNNs are trained, the performance evaluation is held. Thus, this folder

contains the MATLAB files used for running the performance evaluation simulations.

This folder contains 2 M-files for the final proposed framework (one file for the number-

of-the-UEs dependence and one file for the number-of-the-FlyBSs dependence), 6 M-files

for the competitive schemes (three files for the number-of-the-UEs dependence and three

files for the number-of-the-FlyBSs dependence) and 2 M-files for the visualizations of the

results. A txt file, that defines the random positions of the UEs for the simulations, is

also attached.

The folder also contains 3 subfolders - Classes, Functions and Results. The M-files

that are in Classes folder define the network object types and the system model. The
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M-files that are in Functions folder define blocks of code that are used repetitively in

the code execution and therefore it is reasonable for the code transparency to save them

as Matlab functions. Results subfolder contains the numerical values of the simulation

results that are to be plotted with the visualization M-files.
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